Crea sito
Home Tools & Converters
Tools & Converters PDF Stampa E-mail
Scritto da Administrator   
Venerdì 04 Giugno 2010 12:00

The following tools are interactive so it is sufficient to change a parameter (by pressing enter or clicking out the form) to obtain the results !!! Fico

W dBm
VSWR Return Loss
Conductor Resistance
Capacitance of 2 parallel Plates
L-network Lumped One Frequency Matching
Line-Stub One Frequency Matching
Stability Factor(K) and Stability Measure(b) Calculator from [S] Parameters
Coaxial Cable Calculator
Image Frequency Calculator

 

 

W dBm:

Reference formulas:

P_{dBm}=10 \cdot   log  \frac{P_{W}}{1mW}
P_{W}=1mW \cdot 10^{\frac{P_{dBm}}{10}}

 P_{W} 
 [W] 
 P_{dBm} 
 [dBm] 

up...

 

VSWR Return Loss

Reference formulas:

R_{L}= -20 \cdot log \frac{VSWR-1}{VSWR+1} 
\left| \Gamma \right|=10^{-\frac{R_{L}}{20}}  
VSWR=\frac{1+\left | \Gamma \right|}{1-\left| \Gamma \right|}  

 R_{L}
 [dB] 
 VSWR 

up...

 

Resistance of a conductor with respect to its resistivity, length and wire section:

Reference formulas:

R= \rho \cdot \frac{l}{S}

 \rho = 
 [\Omega\cdot m] 
Argento
 l = 
 [\mu m] 
Rame
 S = 
 [\mu m^2] 
Oro
 R = 
 [\Omega] 

up...

 

 

2 Parallel Plates Conductors

Reference formulas:

C= \epsilon_{0} \epsilon_{r} \cdot \frac{S}{d}
\epsilon_{0}=8.8541 \cdot 10^{-12} \left [  \frac{F}{m} \right ] 

 \epsilon_{r} = 
GaAsAllumina
 S = 
 [\mu m^2] 
GaNTeflon
 d = 
 [\mu m] 
SiFR-4
 C = 
 [pF] 
Si02

up...

 

L-network Lumped One Frequency Matching

Reference formulas [1]:

Network 1:

X_{1}= \left(-B_{M}  \mp \sqrt{\frac{G_{M}}{R_{0}}(1-G_{M}R_{0})}\right)^{-1}
X_{2}= -X_{0}  \pm \sqrt{\frac{R_{0}}{G_{M}}(1-G_{M}R_{0})}

Network 2:

X_{1}= X_{M}  \pm \sqrt{\frac{R_{M}}{G_{0}}(1-R_{M}G_{0})}
X_{2}= \left(B_{0}  \mp \sqrt{\frac{G_{0}}{R_{M}}(1-R_{M}G_{0})}\right)^{-1}

 Z_{REF} = 
 [\Omega] 
 f = 
 [GHz] 
 Z_{0} = 
+ j *
 [\Omega] 
 Y_{0} = 
+ j *
 [S] 
 \Gamma_{0} = 
+ j *
 Z_{M} = 
+ j *
 [\Omega] 
 Y_{M} = 
+ j *
 [S] 
 \Gamma_{M} = 
+ j *

Network 1 :
Solution A Solution B
 X_{1A} = 
 [\Omega] 
 X_{1B} = 
 [\Omega] 
 X_{2A} = 
 [\Omega] 
 X_{2B} = 
 [\Omega] 
Network 2 :
Solution A Solution B
 X_{1A} = 
 [\Omega] 
 X_{1B} = 
 [\Omega] 
 X_{2A} = 
 [\Omega] 
 X_{2B} = 
 [\Omega] 

References:

[1] G. Ghione M. Pirola "Elettronica delle Microonde (parte I e II), Otto editore, Torino,2002, Italia (ISBN:88-87503-49-4/ISBN:88-87503-50-8).

up...

Line-Stub One Frequency Matching

Reference formulas:

Network 1:

d_{line}=\frac{mod(\pi+\phi_{M}+acos(\left |\Gamma_{M}  \right |),2\pi)}{2\beta}
d_{stub}=\frac{1}{\beta}atan\left (\frac{2\left | \Gamma_{M} \right |}{\sqrt{1-\left | \Gamma_{M} \right |^2}}  \right )

Network 2:

d_{line}=\frac{mod(-\pi+\phi_{M}-acos(\left |\Gamma_{M}  \right |),2\pi)+2\pi}{2\beta}
d_{stub}=\frac{1}{\beta}atan\left (\frac{\sqrt{1-\left | \Gamma_{M} \right |^2}}{2\left | \Gamma_{M} \right |}  \right )

 Z_{0} = 
 [\Omega] 
 f = 
 [GHz] 
 \varepsilon_{r}  = 
 Z_{M} = 
+ j *
 [\Omega] 
 Y_{M} = 
+ j *
 [S] 
 \Gamma_{M} = 
+ j *

Network 1 : Line + Open Circuit Stub
 d_{line} = 
 [\mu m] 
 d_{stub} = 
 [\mu m] 
Network 2 : Line + Short Circuit Stub
 d_{line} = 
 [\mu m] 
 d_{stub} = 
 [\mu m] 

up...

 

Stability Factor(K) and Stability Measure(b) Calculator from [S] Parameters

Reference formulas:

K= \frac{1-\left | S_{11} \right |^{2}-\left | S_{22} \right |^{2}+\left |S_{11}\cdot S_{22} -S_{12}\cdot S_{21}  \right |^{2}}{2 \left |S_{12}\cdot S_{21}  \right |} 
b= 1+\left | S_{11} \right |^{2}-\left | S_{22} \right |^{2}-\left |S_{11}\cdot S_{22} -S_{12}\cdot S_{21}  \right |^{2}

 \left | S_{11} \right | = 
 \angle S_{11}=
\left [ deg \right ]
 \left | S_{12} \right | = 
 \angle S_{12}=
\left [ deg \right ]
 \left | S_{21} \right | = 
 \angle S_{21}=
\left [ deg \right ]
 \left | S_{22} \right | = 
 \angle S_{22}=
\left [ deg \right ]
 K 
 b 

The net is unconditionally stable if we have: K>1 and b>0

up...

 

Coaxial Cable Calculator

Reference formulas:

Z_{C}= \frac{1}{2 \pi} \sqrt{\frac{\mu_0 \mu_r}{\epsilon_0 \epsilon_r}} \: ln\left (\frac{D_{EXT}}{D_{INT}} \right) 
f_{MAX}=\frac{4c_0}{\pi \sqrt{\epsilon_r} \left ( D_{EXT}+D_{INT}  \right )}
\epsilon_{0}=8.8541 \cdot 10^{-12} \left [  \frac{F}{m} \right ]
\mu_{0}=4 \pi \cdot 10^{-7} \left [  \frac{H}{m} \right ] 
c_{0}=2997924584  \left [  \frac{m}{s} \right ] 

 \epsilon_{r} = 
NylonPTFE(Teflon)
 \mu_{r} = 
PVCPE(Polyethylene)
 D_{EXT} = 
 [mm] 
PEA(Polyethylene Air)PEF(Polyethylene Foamed)
 D_{INT} = 
 [mm] 
AirFR-4
 Z_{C} = 
 [\Omega] 
 f_{MAX} = 
 [GHz] 

up...

Image Frequency Calculator

Reference formulas:

If we have:

f_{LO}

or

f_{RF}

the image frequency is given by:

f_{IM}=\left | 2f_{IF}-f_{RF} \right |

else:

f_{IM}=\left | 2f_{LO}-f_{RF} \right |

 f_{RF} 
 [GHz] 
 f_{IF} 
 [GHz] 

Possible Local Oscillator and Image frequencies:

 f_{LO_1} 
 [GHz] 
 f_{IM_1} 
 [GHz] 
 f_{LO_2} 
 [GHz] 
 f_{IM_2} 
 [GHz] 

up...

Ultimo aggiornamento Domenica 14 Dicembre 2014 14:06  
Copyright © 2020 uWaveRF. Tutti i diritti riservati.
Joomla! è un software libero rilasciato sotto licenza GNU/GPL.